
10 awesome features of Python that you can't use
because you refuse to upgrade to Python 3

There is also a pdf version of these slides

1 / 72

http://asmeurer.github.io/python3-presentation/python3-presentation.pdf

10 awesome features of Python that you can't use
because you refuse to upgrade to Python 3

or

Turning it up to 13!

2 / 72

Prelude
Last month (March) APUG: only three people use Python 3 (including me)

Lots of new features of Python 3.

Some have been backported to Python 2.7. (like dictionary/set comprehensions or set literals,
__future__.print_function)

But there's more than that.

New features that you can't use unless you are in Python 3.

New syntax. New interpreter behavior. Standard library fixes.

And it's more than bytes/unicode...

3 / 72

Feature 1: Advanced unpacking
You can already do this:

>>> a, b = range(2)
>>> a
0
>>> b
1

4 / 72

Feature 1: Advanced unpacking
You can already do this:

>>> a, b = range(2)
>>> a
0
>>> b
1

Now you can do this:

>>> a, b, *rest = range(10)
>>> a
0
>>> b
1
>>> rest
[2, 3, 4, 5, 6, 7, 8, 9]

5 / 72

Feature 1: Advanced unpacking
You can already do this:

>>> a, b = range(2)
>>> a
0
>>> b
1

Now you can do this:

>>> a, b, *rest = range(10)
>>> a
0
>>> b
1
>>> rest
[2, 3, 4, 5, 6, 7, 8, 9]

*rest can go anywhere:

>>> a, *rest, b = range(10)
>>> a
0
>>> b
9
>>> rest
[1, 2, 3, 4, 5, 6, 7, 8]

>>> *rest, b = range(10)
>>> rest
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> b
9

6 / 72

Feature 1: Advanced unpacking
Get the first and last lines of a file

>>> with open("using_python_to_profit") as f:
... first, *_, last = f.readlines()
>>> first
'Step 1: Use Python 3\n'
>>> last
'Step 10: Profit!\n'

7 / 72

Feature 1: Advanced unpacking
Get the first and last lines of a file

>>> with open("using_python_to_profit") as f:
... first, *_, last = f.readlines()
>>> first
'Step 1: Use Python 3\n'
>>> last
'Step 10: Profit!\n'

Refactor your functions

def f(a, b, *args):
 stuff

def f(*args):
 a, b, *args = args
 stuff

8 / 72

Feature 2: Keyword only arguments
def f(a, b, *args, option=True):
 ...

9 / 72

Feature 2: Keyword only arguments
def f(a, b, *args, option=True):
 ...

option comes after *args.

10 / 72

Feature 2: Keyword only arguments
def f(a, b, *args, option=True):
 ...

option comes after *args.

The only way to access it is to explicitly call f(a, b, option=True)

11 / 72

Feature 2: Keyword only arguments
def f(a, b, *args, option=True):
 ...

option comes after *args.

The only way to access it is to explicitly call f(a, b, option=True)

You can write just a * if you don't want to collect *args.

def f(a, b, *, option=True):
 ...

12 / 72

Feature 2: Keyword only arguments
No more, "Oops, I accidentally passed too many arguments to the function, and one of them was swallowed by a
keyword argument".

def sum(a, b, biteme=False):
 if biteme:
 shutil.rmtree('/')
 else:
 return a + b

>>> sum(1, 2)
3

>>> sum(1, 2, 3)

13 / 72

Feature 2: Keyword only arguments
No more, "Oops, I accidentally passed too many arguments to the function, and one of them was swallowed by a
keyword argument".

def sum(a, b, biteme=False):
 if biteme:
 shutil.rmtree('/')
 else:
 return a + b

>>> sum(1, 2)
3

>>> sum(1, 2, 3)

14 / 72

Feature 2: Keyword only arguments
Instead write

def sum(a, b, *, biteme=False):
 if biteme:
 shutil.rmtree('/')
 else:
 return a + b

>>> sum(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: sum() takes 2 positional arguments but 3 were given

15 / 72

Feature 2: Keyword only arguments
Instead write

def sum(a, b, *, biteme=False):
 if biteme:
 shutil.rmtree('/')
 else:
 return a + b

>>> sum(1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: sum() takes 2 positional arguments but 3 were given

16 / 72

Feature 2: Keyword only arguments
Or, "I reordered the keyword arguments of a function, but something was implicitly passing in arguments
expecting the order"

Example:

def maxall(iterable, key=None):
 """
 A list of all max items from the iterable
 """
 key = key or (lambda x: x)
 m = max(iterable, key=key)
 return [i for i in iterable if key(i) == key(m)]

>>> maxall(['a', 'ab', 'bc'], len)
['ab', 'bc']

17 / 72

Feature 2: Keyword only arguments
The max builtin supports max(a, b, c). We should allow that too.

def maxall(*args, key=None):
 """
 A list of all max items from the iterable
 """
 if len(args) == 1:
 iterable = args[0]
 else:
 iterable = args
 key = key or (lambda x: x)
 m = max(iterable, key=key)
 return [i for i in iterable if key(i) == key(m)]

We just broke any code that passed in the key as a second argument without using the keyword.

>>> maxall(['a', 'ab', 'ac'], len)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 10, in maxall
TypeError: unorderable types: builtin_function_or_method() > list()

(Actually in Python 2 it would just return ['a', 'ab', 'ac'], see feature 6).

By the way, max shows that this is already possible in Python 2, but only if you write your function in C.

Obviously, we should have used maxall(iterable, *, key=None) to begin with.

18 / 72

Feature 2: Keyword only arguments
You can make your APIs "future change proof".

Stupid example:

def extendto(value, shorter, longer):
 """
 Extend list `shorter` to the length of list `longer` with `value`
 """
 if len(shorter) > len(longer):
 raise ValueError('The `shorter` list is longer than the `longer` list')
 shorter.extend([value]*(len(longer) - len(shorter)))

>>> a = [1, 2]
>>> b = [1, 2, 3, 4, 5]
>>> extendto(10, a, b)
>>> a
[1, 2, 10, 10, 10]

19 / 72

Feature 2: Keyword only arguments
You can make your APIs "future change proof".

Stupid example:

def extendto(value, shorter, longer):
 """
 Extend list `shorter` to the length of list `longer` with `value`
 """
 if len(shorter) > len(longer):
 raise ValueError('The `shorter` list is longer than the `longer` list')
 shorter.extend([value]*(len(longer) - len(shorter)))

>>> a = [1, 2]
>>> b = [1, 2, 3, 4, 5]
>>> extendto(10, a, b)
>>> a
[1, 2, 10, 10, 10]

Hmm, maybe it makes more sense for longer to come before shorter...

Too bad, you'll break the code.

20 / 72

Feature 2: Keyword only arguments
In Python 3, you can use

def extendto(value, *, shorter=None, longer=None):
 """
 Extend list `shorter` to the length of list `longer` with `value`
 """
 if shorter is None or longer is None:
 raise TypeError('`shorter` and `longer` must be specified')
 if len(shorter) > len(longer):
 raise ValueError('The `shorter` list is longer than the `longer` list')
 shorter.extend([value]*(len(longer) - len(shorter)))

Now, a and b have to be passed in as extendto(10, shorter=a, longer=b).

21 / 72

Feature 2: Keyword only arguments
In Python 3, you can use

def extendto(value, *, shorter=None, longer=None):
 """
 Extend list `shorter` to the length of list `longer` with `value`
 """
 if shorter is None or longer is None:
 raise TypeError('`shorter` and `longer` must be specified')
 if len(shorter) > len(longer):
 raise ValueError('The `shorter` list is longer than the `longer` list')
 shorter.extend([value]*(len(longer) - len(shorter)))

Now, a and b have to be passed in as extendto(10, shorter=a, longer=b).

Or if you prefer, extendto(10, longer=b, shorter=a).

22 / 72

Feature 2: Keyword only arguments
Add new keyword arguments without breaking API.

Python 3 did this in the standard library.

23 / 72

Feature 2: Keyword only arguments
Add new keyword arguments without breaking API.

Python 3 did this in the standard library.

For example, functions in os have follow_symlinks option.

24 / 72

Feature 2: Keyword only arguments
Add new keyword arguments without breaking API.

Python 3 did this in the standard library.

For example, functions in os have follow_symlinks option.

So you can just use os.stat(file, follow_symlinks=False) instead of os.lstat.

25 / 72

Feature 2: Keyword only arguments
Add new keyword arguments without breaking API.

Python 3 did this in the standard library.

For example, functions in os have follow_symlinks option.

So you can just use os.stat(file, follow_symlinks=False) instead of os.lstat.

In case that sounds more verbose, it lets you do

s = os.stat(file, follow_symlinks=some_condition)

instead of

if some_condition:
 s = os.stat(file)
else:
 s = os.lstat(file)

26 / 72

Feature 2: Keyword only arguments
Add new keyword arguments without breaking API.

Python 3 did this in the standard library.

For example, functions in os have follow_symlinks option.

So you can just use os.stat(file, follow_symlinks=False) instead of os.lstat.

In case that sounds more verbose, it lets you do

s = os.stat(file, follow_symlinks=some_condition)

instead of

if some_condition:
 s = os.stat(file)
else:
 s = os.lstat(file)

But os.stat(file, some_condition) doesn't work.

Keeps you from thinking it's a two-argument function.

27 / 72

Feature 2: Keyword only arguments
In Python 2, you have to use **kwargs and do the handling yourself.

28 / 72

Feature 2: Keyword only arguments
In Python 2, you have to use **kwargs and do the handling yourself.

Lots of ugly option = kwargs.pop(True) at the top of your functions.

29 / 72

Feature 2: Keyword only arguments
In Python 2, you have to use **kwargs and do the handling yourself.

Lots of ugly option = kwargs.pop(True) at the top of your functions.

No longer self documenting.

30 / 72

Feature 2: Keyword only arguments
In Python 2, you have to use **kwargs and do the handling yourself.

Lots of ugly option = kwargs.pop(True) at the top of your functions.

No longer self documenting.

If you somehow are writing for a Python 3 only codebase, I highly recommend making all your keyword
arguments keyword only, especially keyword arguments that represent "options".

31 / 72

Feature 3: Chained exceptions
Situation: you catch an exception with except, do something, and then raise a different exception.

def mycopy(source, dest):
 try:
 shutil.copy2(source, dest)
 except OSError: # We don't have permissions. More on this later
 raise NotImplementedError("automatic sudo injection")

Problem: You lose the original traceback

>>> mycopy('noway', 'noway2')
>>> mycopy(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in mycopy
NotImplementedError: automatic sudo injection

32 / 72

Feature 3: Chained exceptions
Situation: you catch an exception with except, do something, and then raise a different exception.

def mycopy(source, dest):
 try:
 shutil.copy2(source, dest)
 except OSError: # We don't have permissions. More on this later
 raise NotImplementedError("automatic sudo injection")

Problem: You lose the original traceback

>>> mycopy('noway', 'noway2')
>>> mycopy(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in mycopy
NotImplementedError: automatic sudo injection

What happened with the OSError?

33 / 72

Feature 3: Chained exceptions
Python 3 shows you the whole chain of exceptions:

mycopy('noway', 'noway2')
Traceback (most recent call last):
File "<stdin>", line 3, in mycopy
File "/Users/aaronmeurer/anaconda3/lib/python3.3/shutil.py", line 243, in copy2
 copyfile(src, dst, follow_symlinks=follow_symlinks)
File "/Users/aaronmeurer/anaconda3/lib/python3.3/shutil.py", line 109, in copyfile
 with open(src, 'rb') as fsrc:
PermissionError: [Errno 13] Permission denied: 'noway'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in mycopy
NotImplementedError: automatic sudo injection

34 / 72

Feature 3: Chained exceptions
Python 3 shows you the whole chain of exceptions:

mycopy('noway', 'noway2')
Traceback (most recent call last):
File "<stdin>", line 3, in mycopy
File "/Users/aaronmeurer/anaconda3/lib/python3.3/shutil.py", line 243, in copy2
 copyfile(src, dst, follow_symlinks=follow_symlinks)
File "/Users/aaronmeurer/anaconda3/lib/python3.3/shutil.py", line 109, in copyfile
 with open(src, 'rb') as fsrc:
PermissionError: [Errno 13] Permission denied: 'noway'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in mycopy
NotImplementedError: automatic sudo injection

You can also do this manually using raise from

raise exception from e

>>> raise NotImplementedError from OSError
OSError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError

35 / 72

Feature 4: Fine grained OSError subclasses
The code I just showed you is wrong.

It catches OSError and assumes it is a permission error.

But OSError can be a lot of things (file not found, is a directory, is not a directory, broken pipe, ...)

You really have to do

import errno
def mycopy(source, dest):
 try:
 shutil.copy2(source, dest)
 except OSError as e:
 if e.errno in [errno.EPERM, errno.EACCES]:
 raise NotImplementedError("automatic sudo injection")
 else:
 raise

36 / 72

Feature 4: Fine grained OSError subclasses
The code I just showed you is wrong.

It catches OSError and assumes it is a permission error.

But OSError can be a lot of things (file not found, is a directory, is not a directory, broken pipe, ...)

You really have to do

import errno
def mycopy(source, dest):
 try:
 shutil.copy2(source, dest)
 except OSError as e:
 if e.errno in [errno.EPERM, errno.EACCES]:
 raise NotImplementedError("automatic sudo injection")
 else:
 raise

Wow. That sucks.

37 / 72

Feature 4: Fine grained OSError subclasses
The code I just showed you is wrong.

It catches OSError and assumes it is a permission error.

But OSError can be a lot of things (file not found, is a directory, is not a directory, broken pipe, ...)

You really have to do

import errno
def mycopy(source, dest):
 try:
 shutil.copy2(source, dest)
 except OSError as e:
 if e.errno in [errno.EPERM, errno.EACCES]:
 raise NotImplementedError("automatic sudo injection")
 else:
 raise

Wow. That sucks.

38 / 72

Feature 4: Fine grained OSError subclasses
Python 3 fixes this by adding a ton of new exceptions.

You can just do

def mycopy(source, dest):
 try:
 shutil.copy2(source, dest)
 except PermissionError:
 raise NotImplementedError("automatic sudo injection")

(Don't worry, PermissionError subclasses from OSError and still has .errno. Old code will still work).

39 / 72

https://docs.python.org/3.4/library/exceptions.html#os-exceptions

Feature 5: Everything is an iterator
This is the hardest one to sell.

Iterators exist in Python 2 as well.

But you have to use them. Don't write range or zip or dict.values or

40 / 72

Feature 5: Everything is an iterator
If you do...

41 / 72

Feature 5: Everything is an iterator
If you do...

def naivesum(N):
 """
 Naively sum the first N integers
 """
 A = 0
 for i in range(N + 1):
 A += i
 return A

42 / 72

Feature 5: Everything is an iterator
If you do...

def naivesum(N):
 """
 Naively sum the first N integers
 """
 A = 0
 for i in range(N + 1):
 A += i
 return A

In [3]: timeit naivesum(1000000)
10 loops, best of 3: 61.4 ms per loop

43 / 72

Feature 5: Everything is an iterator
If you do...

def naivesum(N):
 """
 Naively sum the first N integers
 """
 A = 0
 for i in range(N + 1):
 A += i
 return A

In [3]: timeit naivesum(1000000)
10 loops, best of 3: 61.4 ms per loop

In [4]: timeit naivesum(10000000)
1 loops, best of 3: 622 ms per loop

44 / 72

Feature 5: Everything is an iterator
If you do...

def naivesum(N):
 """
 Naively sum the first N integers
 """
 A = 0
 for i in range(N + 1):
 A += i
 return A

In [3]: timeit naivesum(1000000)
10 loops, best of 3: 61.4 ms per loop

In [4]: timeit naivesum(10000000)
1 loops, best of 3: 622 ms per loop

In [5]: timeit naivesum(100000000)

45 / 72

Feature 5: Everything is an iterator
If you do...

def naivesum(N):
 """
 Naively sum the first N integers
 """
 A = 0
 for i in range(N + 1):
 A += i
 return A

In [3]: timeit naivesum(1000000)
10 loops, best of 3: 61.4 ms per loop

In [4]: timeit naivesum(10000000)
1 loops, best of 3: 622 ms per loop

In [5]: timeit naivesum(100000000)

46 / 72

Feature 5: Everything is an iterator

47 / 72

Feature 5: Everything is an iterator
Instead write some variant (xrange, itertools.izip, dict.itervalues, ...).

Inconsistent API anyone?

48 / 72

Feature 5: Everything is an iterator
In Python 3, range, zip, map, dict.values, etc. are all iterators.

If you want a list, just wrap the result with list.

Explicit is better than implicit.

Harder to write code that accidentally uses too much memory, because the input was bigger than you expected.

49 / 72

Feature 6: No more comparison of everything to
everything

In Python 2, you can do

>>> max(['one', 2]) # One *is* the loneliest number
'one'

50 / 72

Feature 6: No more comparison of everything to
everything

In Python 2, you can do

>>> max(['one', 2]) # One *is* the loneliest number
'one'

Hurray. I just disproved math!

51 / 72

Feature 6: No more comparison of everything to
everything

It's because in Python 2, you can < compare anything to anything.

>>> 'abc' > 123
True
>>> None > all
False

52 / 72

Feature 6: No more comparison of everything to
everything

It's because in Python 2, you can < compare anything to anything.

>>> 'abc' > 123
True
>>> None > all
False

In Python 3, you can't do this:

>>> 'one' > 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() > int()

This avoids subtle bugs, e.g., from not coercing all types from int to str or visa versa.

Especially when you use > implicitly, like with max or sorted.

In Python 2:

>>> sorted(['1', 2, '3'])
[2, '1', '3']

53 / 72

Feature 7: yield from
Pretty great if you use generators

Instead of writing

for i in gen():
 yield i

Just write

yield from gen()

Easily refactor generators into subgenerators.

54 / 72

Feature 7: yield from
Makes it easier to turn everything into a generator. See "Feature 5: Everything is an iterator" above for why you
should do this.

Instead of accumulating a list, just yield or yield from.

Bad

def dup(n):
 A = []
 for i in range(n):
 A.extend([i, i])
 return A

Good

def dup(n):
 for i in range(n):
 yield i
 yield i

Better

def dup(n):
 for i in range(n):
 yield from [i, i]

55 / 72

Feature 7: yield from
In case you don't know, generators are awesome because:

Only one value is computed at a time. Low memory impact (see range example above).

Can break in the middle. Don't have to compute everything just to find out you needed none of it. Compute just
what you need. If you often don't need it all, you can gain a lot of performance here.

If you need a list (e.g., for slicing), just call list() on the generator.

Function state is "saved" between yields.

This leads to interesting possibilities, à la coroutines...

56 / 72

Feature 8: asyncio
Uses new coroutine features and saved state of generators to do asynchronous IO.

Taken from Guido's slides from “Tulip: Async I/O for Python 3” by Guido
van Rossum, at LinkedIn, Mountain View, Jan 23, 2014
@coroutine
def fetch(host, port):
 r,w = yield from open_connection(host,port)
 w.write(b'GET /HTTP/1.0\r\n\r\n ')
 while (yield from r.readline()).decode('latin-1').strip():
 pass
 body=yield from r.read()
 return body

@coroutine
def start():
 data = yield from fetch('python.org', 80)
 print(data.decode('utf-8'))

57 / 72

Feature 8: asyncio
Uses new coroutine features and saved state of generators to do asynchronous IO.

Taken from Guido's slides from “Tulip: Async I/O for Python 3” by Guido
van Rossum, at LinkedIn, Mountain View, Jan 23, 2014
@coroutine
def fetch(host, port):
 r,w = yield from open_connection(host,port)
 w.write(b'GET /HTTP/1.0\r\n\r\n ')
 while (yield from r.readline()).decode('latin-1').strip():
 pass
 body=yield from r.read()
 return body

@coroutine
def start():
 data = yield from fetch('python.org', 80)
 print(data.decode('utf-8'))

Not going to lie to you. I still don't get this.

58 / 72

Feature 8: asyncio
Uses new coroutine features and saved state of generators to do asynchronous IO.

Taken from Guido's slides from “Tulip: Async I/O for Python 3” by Guido
van Rossum, at LinkedIn, Mountain View, Jan 23, 2014
@coroutine
def fetch(host, port):
 r,w = yield from open_connection(host,port)
 w.write(b'GET /HTTP/1.0\r\n\r\n ')
 while (yield from r.readline()).decode('latin-1').strip():
 pass
 body=yield from r.read()
 return body

@coroutine
def start():
 data = yield from fetch('python.org', 80)
 print(data.decode('utf-8'))

Not going to lie to you. I still don't get this.

It's OK, though. Even David Beazley had a hard time with it:

59 / 72

Feature 9: Standard library additions
faulthandler

Display (limited) tracebacks, even when Python dies the hard way.

Won't work with kill -9, but does work with, e.g., segfaults.

import faulthandler
faulthandler.enable()

def killme():
 # Taken from http://nbviewer.ipython.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%201%20-%20Running%20Code.ipynb
 import sys
 from ctypes import CDLL
 # This will crash a Linux or Mac system; equivalent calls can be made on
 # Windows
 dll = 'dylib' if sys.platform == 'darwin' else 'so.6'
 libc = CDLL("libc.%s" % dll)
 libc.time(-1) # BOOM!!

killme()

$python test.py
Fatal Python error: Segmentation fault

Current thread 0x00007fff781b6310:
File "test.py", line 11 in killme
File "test.py", line 13 in <module>
Segmentation fault: 11

Or kill -6 (SIGABRT)

Can also enable with python -X faulthandler

60 / 72

Feature 9: Standard library additions
ipaddress

Exactly that. IP addresses.

>>> ipaddress.ip_address('192.168.0.1')
IPv4Address('192.168.0.1')
>>> ipaddress.ip_address('2001:db8::')
IPv6Address('2001:db8::')

Just another thing you don't want to roll yourself.

61 / 72

Feature 9: Standard library additions
functools.lru_cache

A LRU cache decorator for your functions.

From docs.

@lru_cache(maxsize=32)
def get_pep(num):
 'Retrieve text of a Python Enhancement Proposal'
 resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
 try:
 with urllib.request.urlopen(resource) as s:
 return s.read()
 except urllib.error.HTTPError:
 return 'Not Found'

>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)
... print(n, len(pep))

>>> get_pep.cache_info()
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)

62 / 72

https://docs.python.org/3/whatsnew/3.2.html#functools

Feature 9: Standard library additions
enum

Finally, an enumerated type in the standard library.

Python 3.4 only.

>>> from enum import Enum
>>> class Color(Enum):
... red = 1
... green = 2
... blue = 3
...

Uses some magic that is only possible in Python 3 (due to metaclass changes):

>>> class Shape(Enum):
... square = 2
... square = 3
...
Traceback (most recent call last):
...
TypeError: Attempted to reuse key: 'square'

63 / 72

Feature 10: Fun
Unicode variable names

>>> résumé = "knows Python"
>>> π = math.pi

64 / 72

Feature 10: Fun
Unicode variable names

>>> résumé = "knows Python"
>>> π = math.pi

Sorry, letter-like characters only.

! = "beer" does not work.

65 / 72

Feature 10: Fun
Unicode variable names

>>> résumé = "knows Python"
>>> π = math.pi

Sorry, letter-like characters only.

! = "beer" does not work.

Function annotations

def f(a: stuff, b: stuff = 2) -> result:
 ...

Annotations can be arbitrary Python objects.

Python doesn't do anything with the annotations other than put them in an __annotations__ dictionary.

>>> def f(x: int) -> float:
... pass
...
>>> f.__annotations__
{'return': <class 'float'>, 'x': <class 'int'>}

But it leaves open the possibility for library authors to do fun things.

Example, IPython 2.0 widgets.

Run IPython notebook (in Python 3) from IPython git checkout and open
http://127.0.0.1:8888/notebooks/examples/Interactive%20Widgets/Image%20Processing.ipynb 66 / 72

http://127.0.0.1:8888/notebooks/examples/Interactive%20Widgets/Image%20Processing.ipynb

Feature 11: Unicode and bytes
In Python 2, str acts like bytes of data.

There is also unicode type to represent Unicode strings.

67 / 72

Feature 11: Unicode and bytes
In Python 2, str acts like bytes of data.

There is also unicode type to represent Unicode strings.

In Python 3, str is a string.

bytes are bytes.

There is no unicode. str strings are Unicode.

68 / 72

Feature 12: Matrix Multiplication
In Python 3.5, you are able to replace

 >>> a = np.array([[1, 0], [0, 1]])
 >>> b = np.array([[4, 1], [2, 2]])
 >>> np.dot(a, b)
 array([[4, 1],
 [2, 2]])

with

 >>> a = np.array([[1, 0], [0, 1]])
 >>> b = np.array([[4, 1], [2, 2]])
 >>> a @ b
 array([[4, 1],
 [2, 2]])

Any object can override __matmul__ to use @.

69 / 72

Feature 13: Pathlib
In Python 2, path handling is verbose

import os

directory = "/etc"
filepath = os.path.join(directory, "test_file.txt")

if os.path.exists(filepath):
 stuff

In Python 3, it is much more simpler

from pathlib import Path

directory = Path("/etc")
filepath = directory / "test_file.txt"

if filepath.exists():
 stuff

70 / 72

Discuss

71 / 72

Slides were made with http://remarkjs.com/

All images have been blatantly stolen from the internet.

Source for slides can be found at https://github.com/asmeurer/python3-presentation.

I am Aaron Meurer (@asmeurer).

I gave this presentation on April 9, 2014 at APUG. If you are in Austin, TX and you enjoy Python, you should come to
APUG!

This presentation was updated by Jules David (@galactics) on march 2016, to include some changes brought by Python
3.5.

72 / 72

http://remarkjs.com/
https://github.com/asmeurer/python3-presentation
https://github.com/asmeurer/
http://www.meetup.com/austinpython/
https://github.com/galactics

